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We use induction to derive the distribution of the waiting time of the ith waiting
customer in a busy period for a G/M/1 queue with a first come–first serve service.
A trivial implication gives the law for the ith waiting time in a busy period for a
G/M/c queue. Finally, we use the Lindley recursion to relate our results to the
distribution of random walks.

1. INTRODUCTION

Treatments of the G/M/1 queue can be found in several books on queuing theory (e.g.,
Asmussen [2], Cohen [3], and Prabhu [4]). There are alternative methods to explicitly
express the steady-state waiting times in a G/M/1 queue (e.g., Prabhu [4, p. 109], start-
ing from the transient behavior of the system, or Asmussen [2, p. 228 and 238] based
on the Wiener–Hopf factorization identity). The busy period in G/M/1 queues was
also characterized (e.g., Cohen [3, p. 225]) and, recently, it has been studied by
Adan, Boxma, and Perry [1] using the sample path approach.

In this study, we characterize the conditional law of the waiting time of the ith
customer within a busy period of a G/M/1 queue given that at least i customers
were served within this busy period. As we expect, this distribution is a normalized
sum of Erlang(m, j), Ej

m, distributions with j ¼ 1, . . . , i 2 1. Therefore, our contri-
bution is the explicit expressions for the probability that on arrival, the ith waiting cus-
tomer in the busy period sees j customers in the system (or, equivalently, j 2 1
customers in the queue).

We also state two straightforward applications for our results. The first is the law
for the waiting time of the ith customer in a busy period of a G/M/c queue. The
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second uses the equivalence of the Lindley recursion, describing the waiting time in a
G/G/1 queue with a first come–first serve (FCFS) service discipline, to random walks to
describe the distribution of random walks condition on that they do not cross a given
threshold.

For completeness, we call to mind that the probability density function (pdf)
and cumulative distribution function (cdf) of an Erlang(m, j) random variable, with
j phases, each with mean m21, are given by

fEm

j
(x) ¼ e�mx m jx j�1

( j� 1)!
, 8x � 0, (1)

FEm

j
(x) ¼ 1� e�mx

Xj�1

k¼0

(mx)k

k!
, 8x � 0, (2)

respectively, and the superscript m emphasizes the mean of each phase.

2. WAITING TIME OF THE i TH CUSTOMER WITHIN A BUSY PERIOD

2.1. For the G/M/1 Queue

Consider a G/M/1 queue with interarrival times Zi for i � 1 that are independent
and identically distributed (i.i.d.) random variables with a cdf FZ(z) and service
requirements Si for i � 1 that are i.i.d. and exponentially distributed with
mean m21.

We let N þ 1 be the number of customers served during a busy period. We number
the arrivals during a busy period such that the customer that initiates the busy period
(and does not wait) is the i ¼ 0 customer in the busy period. Then the first customer that
waits, if such exists, is the i ¼ 1 customer and so on until the i ¼ Nth customer. Note
that upon completion of service for the Nth customer, the server is idle. Furthermore,
because E(X ) , 0, busy periods are i.i.d. and E(N ) , 1 almost surely.

We let Wi be distributed as the waiting time of the ith customer in a busy cycle on1

I{N � i} ¼ 1: (3)

Then, the cdf of Wi is defined as

FWi (x) ¼ P(Wi � x) ¼ E(I{0 , Wi � x}); 8x � 0: (4)

We let

ami ¼
ð1

0
e�mt (mt)i

i!
dFZ(t)

be the probability that exactly i customers would be served within an interarrival time if
there are an infinite number of customers in the queue. Again, the superscript m empha-
sizes the mean service time. Moreover, it is clear that

P
i¼0
1 ai

m ¼ 1.
Using the memoryless of the service time, W1, the waiting time of the first

customer that waits is exponentially distributed with mean m21. In the proof of
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Theorem 1 we use this fact to express the distribution of Wi, for each i � 1. Let ¼d
denote an equality in distribution; then we have the following theorem.

THEOREM 1: Let Wi be a random variable with a cdf defined by Eq. (4) for a G/M/1
queue with interarrival times Z with a cdf FZ(z) and exponential service with mean
m21. Then

Wi¼
d Xi

j¼1

P i
j Em

j , (5)

where Ej
m is an Erlang(m, j) distribution with a pdf and cdf given in Eq. (1), P1

1 ¼ 1 and
P0

i ¼ 0 for each i � 1, and Pj
i for i � 2 is

P i
j ¼

Xi�1

k¼j�1

Pi�1
k am

k�jþ1, 8j ¼ 1, . . . , i: (6)

PROOF: We argue by induction. For i ¼ 1, the distribution of W1 is exponential. Thus,
P1

1¼ 1 and W1¼d Em
1 , so the claim holds for i ¼ 1. Now, we assume that for i 2 1 � 1,

Wi�1¼
d Xi�1

j¼1

Pi�1
j Em

j (7)

and show that the claim holds for i.
We prove the theorem using the following observation. For each j ¼ 1, . . . , i, we

have Wi¼d Em
j , if two independent events happened. The first is that Wi�1¼d Em

k for
k¼ j 2 1, . . . , i 2 1,2 and the second event is that during the interarrival time of the
ith customer, there were exactly l ¼ k þ 1 2 j service completions; that is, upon
arrival, the (i 2 1)st customer is the (k þ 1)st customer in the system (queueþ
service), and then k þ 12j service completions take place until the arrival of the ith cus-
tomer. These two independent events lead to that j customers are seen by the ith arrival.
Furthermore, P ðWi�1¼d Em

j ) ¼ Pi�1
j for k¼ j 2 1, . . . , i 2 1 and the probability that

exactly k þ 1 2 j services are completed during an interarrival time is akþ12j
m . Thus,

because the ith customer can see j customers in the system only if Wi21 saw at least
j 2 1, we have

P Wi¼
d

Em
j

� �
¼
Xi�1

k¼j�1

P Wi�1¼
d

Em
k

� �
amkþ1�j

¼
Xi�1

k¼j�1

Pi�1
k amkþ1�j, (8)

where the last equality follows from the induction assumption in Eq. (7). Observing
that the ith customer can see 1 to i customers in the system upon arrival completes the
proof. B

LAW FOR THE i TH WAITING TIME 77



We conclude this subsection by establishing that the distribution given for Wi in
Theorem 1 is proper. This is equivalent to proving that

Xi

j¼1

Pi
j ¼

Xi

j¼1

Xi�1

k¼j�1

Pi�1
k amk�jþ1 ¼ E

�
I{N � i}

�
: (9)

To establish Eq. (9), we observe that given Wi�1¼
d

Em
k , the busy cycle ends if there were

k þ 1 or potentially more service completions during the interarrival time of the ith cus-
tomer. Thus,

P
�
N � i jWi�1¼

d
Em

k

�
¼ E

�
I
�

N � i jWi�1¼
d

Em
k

�	

¼
Xk

l¼0

am
l , (10)

and using Eq. (10),

Xi

j¼1

Xi�1

k¼j�1

Pi�1
k am

k�jþ1 ¼
Xi�1

k¼0

Pi�1
k

Xkþ1

j¼1

amk�jþ1

¼
Xi�1

k¼1

Pi�1
k

Xk

l¼0

aml

¼
Xi�1

k¼1

Pi�1
k P

�
N � ijWi�1¼

d
Em

k

�

¼ E (I{N � i}), (11)

where the last is from the Total Expectation Theorem. This establishes Eq. (9).

2.2. For G/M/c Queues

Consider a G/M/c queue where each server has an exponential service time with mean
m21, as was investigated by Asmussen [2] and Wolff [6]. The busy period in this
queue is the time from an arrival that makes all c servers busy to the first time
when only c 2 1 servers are busy. Denoting the waiting time of the ith customer in
a busy period of a G/M/c queue by Wi

c, a similar proof to the one of Theorem 1 estab-
lishes the following corollary.

COROLLARY 1: For a G/M/c queue with interarrival times Z with a cdf FZ (z) and
exponential service with mean m21, we have

Wc
i ¼

d Xi

j¼1

Pi
jE

cm
j , (12)
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where Ej
cm has an Erlang(cm, j) distribution with a pdf and cdf given in Eq. (1),

P1
1 ¼ 1, and P0

i ¼ 0 for each i � 1, and Pj
i for i � 2 is

Pi
j ¼

Xi�1

k¼j�1

Pi�1
k acm

k�jþ1, 8j ¼ 1, . . . , i: (13)

2.3. The Busy Period in G/M/1 Queue and Random Walks

For the G/M/1 queue with a FCFS service discipline, let

Xi ¼ Si � Zi�1, 8i � 1, (14)

with Z0 ¼ 0. Thus, fXigi¼2
1 is a sequence of i.i.d. random variables. Let X be the generic

random variable of this sequence and assume that E(X ) , 0 (i.e., E(Z) . 1/m).
Consider the random walk fVigi¼1

1 given by Vn ¼
P

i¼1
n Xi (with V0 ; 0) and

observe that because E(X ) , 0, V tends to 21 almost surely (e.g., Ross [5]). A one-
sided regulated random walk fYigi¼1

1 that is regulated at zero is given by

Y0 ¼ 0 and Yiþ1 ¼ max{0, Yi þ Xiþ1}, 8i � 0: (15)

Then from the equivalence of the waiting time in a G/G/1 queue with a FCFS service
discipline to Eq. (15), known also as the Lindley recursion (e.g., Cohen [3]), and from
Theorem 1, Corollary 2 follows.

COROLLARY 2: For random walks with steps defined by Eq. (14) with Si that follow
and exponential distribution with mean m21, the pdfs of fYi jmin0,j�ifYjg. 0g
and fVi jmin0,j�ifVjg. 0g are identical to those of Wi given in Eq. (5) of
Theorem 1.
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Notes

1. We could define W̃i such that P(W̃i ¼ 0 j N , i) ¼ 1 and W̃iIfN � ig ¼Wi, but this makes our
notation cumbersome.

2. Of course, with j ¼ 1, k ¼ 1, . . . , i 2 1, so we could define, in general, k ¼ max f j 2 1, 1g , . . . , i 2 1.
However, we preferred to define P0

i ¼ 0 for each i. Both definitions are equivalent, as is evident in Eq. (8).
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